
NASA / TM--2002-211358 AIAA-2002--0750

Project Integration Architecture (PIA) and

Computational Analysis Programming

Interface (CAPRI) for Accessing Geometry
Data From CAD Files

Theresa L. Benyo
Glenn Research Center, Cleveland, Ohio

March 2002

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key part

in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the

NASA STI Database, the largest collection of
aeronautical and space science STI in the world.

The Program Office is also NASA's institutional
mechanism for disseminating the results of its

research and development activities. These results

are published by NASA in the NASA STI Report
Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of
NASA programs and include extensive data

or theoretical analysis. Includes compilations

of significant scientific and technical data and
information deemed to be of continuing

reference value. NASA's counterpart of peer-

reviewed formal professional papers but

has less stringent limitations on manuscript

length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to NASA's
mission.

Specialized services that complement the STI
Program Office's diverse offerings include

creating custom thesauri, building customized
data bases, organizing and publishing research

results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

Access the NASA STI Program Home Page
at http'[[www.sti.nasa.gov

E-mail your question via the Internet to
help@sti.nasa.gov

Fax your question to the NASA Access

Help Desk at 301--621-0134

Telephone the NASA Access Help Desk at
301-621--0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076

NASA / TM--2002-211358 AIAA-2002-0750

Project Integration Architecture (PIA) and

Computational Analysis Programming

Interface (CAPRI) for Accessing Geometry
Data From CAD Files

Theresa L. Benyo

Glenn Research Center, Cleveland, Ohio

Prepared for the

40th Aerospace Sciences Meeting and Exhibit

sponsored by the American Institute of Aeronautics and Astronautics

Reno, Nevada, January 14-17, 2002

National Aeronautics and

Space Administration

Glenn Research Center

March 2002

Trade names or manufacturers' names are used in this report for
identification only. This usage does not constitute an official

endorsement, either expressed or implied, by the National
Aeronautics and Space Administration.

NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076

Available from

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22100

Available electronically at h_: / / gltrs.grc.nasa.gov/GLTRS

PROJECT INTEGRATION ARCHITECTURE (PIA) AND COMPUTATIONAL

ANALYSIS PROGRAMMING INTERFACE (CAPRI) FOR ACCESSING

GEOMETRY DATA FROM CAD FILES

Theresa L. Benyo*

National Aeronautics and Space Administration
Glenn Research Center

Cleveland, Ohio 44135

ABSTRACT

Integration of a supersonic inlet simulation with a

computer aided design (CAD) system is demonstrated.

The integration is performed using the Project
Integration Architecture (PIA). PIA provides a common

environment for wrapping many types of applications.
Accessing geometry data from CAD files is

accomplished by incorporating appropriate function

calls from the Computational Analysis Programming
Interface (CAPRI). CAPRI is a CAD vendor neutral

programming interface that aids in acquiring geometry

data directly from CAD files. The benefits of wrapping

a supersonic inlet simulation into PIA using CAPRI are;
direct access of geometry data, accurate capture of

geometry data, automatic conversion of data units, CAD

vendor neutral operation, and on-fine interactive history
capture. This paper describes the PIA and the CAPRI

wrapper, and details the supersonic inlet simulation
demonstration.

INTRODUCTION

Acquiring geometry input data for computational fluid
dynamics (CFD) simulations consumes valuable time

and often results in incomplete or inaccurate data. The

Project Integration Architecture (PIA) along with the

Computational Analysis Programming Interface

(CAPRI) provides an environment for accessing
geometry directly from CAD files and making the data

available to CFD simulations. The PIA is an object-

oriented, wrapping architecture for capturing,
encapsulating, presenting, and integrating all elements

of day-to-day technical aerospace research activity.

The benefits of PIA are:

• Direct access to data of many formats

• Accurate capture and presentation of information

• Convenient data archiving in a single environment

CAPRI is a programming interface for acquiring
geometry data directly from CAD files in a vendor-

neutral manner. The wrapping of CAD information by

PIA through the use of CAPRI provides geometry
objects that hold and organize the data.

PIA 1 provides a common, self-revealing application

architecture that eliminates the need to repeatedly adapt
graphical user interfaces (GUIs), browsers, search

engines, and other applications to various experimental
and analytical information sources. This architecture

uses object-oriented technology to implement

application wrappers that encapsulate, present, and
integrate all elements of day-to-day technical

information. This information includes data pertaining
to experiments, designs, analyses, and simulations.

Further, this information can form the foundation upon
which statistical characterizations and optimizations are
based. The self-revealing architecture of PIA allows

consumers of application information to use a particular

application without pre-existing knowledge of the
application contents.

An application presented through a PIA-conformant

wrapper begins with a central application object,
labeled PacAppl in the upper center of Figure 1. This
object is the root structure from which all further

components emanate. The PacAppl object currently
presents four principal structures:

*Computer Engineer, AIAA Member. E-mail: _.I.i!Le.Le.:_.,.a.:...B..e£_b.,-9:.._?.g.r:_.:L_...,_s.a:.gg.y

NASA/TM--2002-211358 1

Figure1:ThePIAobjectclasses

1. A setofoperationsthattheapplicationiswillingto
perform(PacOp),

2. A massof data,whichtheapplicationcurrently
contains(PaeCfg),

3. A structureby whichthe containeddatais
identified(PaePid),and

4. An.ecdysiastical(fromtheGreekekdysis, ekdyein,
to get out of, strip off) sorting of the information-
bearing objects in the application (not shown in the
figure).

The PacOp structure, as illustrated in Figure 1, could

contain operations such as Initialize, Run, and Stop.

The implementer of the particular application wrapper
has complete freedom to attach any kind or number of

operations needed. As will be discussed later, the

PIA/CAD/CAPRI wrapper implements only an
AequireData operation.

The PaeCfg structure organizes the parameter objects

(the blocks beginning with the label Par: in the figure)
that hold the data of the application. For a

computational fluid dynamics (CFD) application, these

objects could hold boundary layer information, grid
coordinates, or geometry describing the modeled

environment. Parameters within a given PaeCfg are
sorted by a unique, fully qualified name, which is to be

discussed shortly. The PaeCfg objects themselves are

arranged into an n-ary tree in which offspring are
considered to be variants of their ancestors.

A parameter missing in a descendant configuration is
considered to be inherited from the most recent

ancestor containing that parameter. In this way, needless
repetition of invariant information is avoided.

The parameter objects as mentioned above, hold the

actual data of applications. A wide variety of parameter

forms; Booleans, strings, integers, floating point
numbers, scalars, arrays, matrices, organizations of
other parameters, and so on, are defined. After the

generic forms are defined, the semantics of a particular
form are infused by means of further class derivation.

Of most interest in this way are the floating-point

number forms, which form the basis of a vast array of
technical parameters. First, the floating point numbers

are infused with a concept of their own dimensionality,
both in terms of their dimensional characteristics

(length, mass, velocity, non-dimensional, etc.) and of

the measurement system in which their encapsulated
value is given (English feet, English inches, metric

meters, metric centimeters, etc.). This allows
applications to proceed without concern for the

measurement systems in which they operate; values are

simply requested in the desired measurement system
(a CFD application may work in feet, pounds, and
seconds) and the parameters convert themselves as

necessary. After this, further class derivation gives the
number a usage, for example a non-dimensional
floating-point number is further derived into a Mach

number and then to a far-field Mach number. An

application encountering such a derived object thus has
the capability of determining what it is (a far-field Mach
number) and deciding whether or not that is the sort of
information it wishes to find.

NASA/TM---2002-211358 2

ThePacPid structure exists to reveal the structure of

parameters within the application. Again, the structure

is arranged into an n-ary tree in which offspring are

considered grouped under the parent. The fully
qualified name of a parameter (used to identify the

parameter in the PacCfg configuration discussed above)
is developed by concatenating the names of the

corresponding path in the PacPid tree. In the example
shown in Figure 1, the root of the identification tree is

Cfd, which in turn has three direct offspring, Due, Inl,

and Noz (presumably, an inlet, duct, and nozzle).

Due, in tum, has two direct offspring, D and E. The
fully-qualified name of the D parameter would then be

D/Due/Cfd, as it appears in the PaeCfg portion of the
figure.

The fourth component, the ecdysiastical sorting (which

is not shown in the figure), serves to provide quick

access for entities such as browsers and search engines
to well-known types of information within the particular

application wrapper instance, even though that
information may not exist exactly in its well-known

from. PIA allows application wrappers to employ the

derivative capacities of object-oriented technology to
specialize parameters beyond their well-known
character (as is, in fact, the case in the PIA/CAD/

CAPRI/ProEngineer wrapper). As a consequence, a

parameter may not be well-known on its face, but

through the ecdysiastical sorting, it still may be quickly
located based on its underlying character.

Together, this application structure enables researchers

to maintain and manage experimental data, simulations,

analyses, documentation, logs, change histories, and
many other forms of information in a common

repository that is easily accessed and extended. As a

result, the entire engineering process can be captured.
The well-known nature of the many objects of which

this architecture is comprised enables the integration of

these many technical components into a logical whole.

PIA enables a common user interface and allows

browsers and search engines to deal with the myriad of
technical information applications in a common manner.

PIA also eliminates the numerous manual steps in
exchanging data between different disciplines and levels
of fidelity, resulting in a framework for the automation
of routine tasks.

CAPRI

In order to achieve the goal of gathering geometry data
from Computer Aided Design (CAD) files into the PIA

environment, it is necessary to wrap this application in a

PIA-compliant wrapper. The technology provided by
CAPRI 2 to provide a vendor-neutral interface to this

information was utilized to avoid having to provide a
wrapper specific to each CAD vendor.

CAPRI provides a library specific to each CAD vendor.

Each library implements the common CAPRI Application
Programming Interface (API) using services specific to

the supported vendor. By programming to the CAPRI

API and linking to the appropriate vendor-specific
library, a consuming application may be made
independent of the particular CAD vendor from which

geometry information is to be obtained. Currently,

CAPRI provides libraries to support Unigraphics,
ProEngineer, CATIA, FELISA, Computervision's

CADDS, and SDRC's I-DEAS products.

CAPRI provides geometry information in a data

hierarchy of nodes, edges, faces, boundaries, and

volumes. Figure 2 illustrates this hierarchy. Nodes are

the simplest entities and are just points in 3-space.
Edges are open curves. Edges begin and end at distinct

nodes and, thus, a closed curve must be formed by two

or more edges. Faces are bounded by closed sets of
edges organized into loops and may join other faces at

shared edges. Boundaries then collect faces together

into sets. Volumes are closed regions of 3-space
bounded by the sum of all the faces found in the
boundaries of the volume.

CAPRI also provides tessellations of edges and faces.

Edges are tessellated as an ordered stream of points in

3-space. Faces are tessellated as points in 3-space

arranged into triangles. Information on the connectivity
of the triangles within a face is provided. The points

used to tessellate an edge are identically those used to

tessellate the edge of the faces, which that edge
terminates so that a complete triangulation of the
volume as a whole is obtained.

An additional object called a bounding box is also
provided. Bounding boxes are items that indicate the

3-space that a particular CAPRI data object such as a
face is in.

NASA/TM--2002-211358 3

IF

i,

Face ,,..

ii_ 1,

Node

Figure 2" A simple volume with a cylinder cutout--Edges marked with arrows for front face

PIA has defined well-known parameter objects that application structures defined by the PIA; the

follow the structuralization of geometry information operations available (in this case, only the AequireData

provided by the CAPRI technology. The PIA/CAD/ operation), the single parameter configuration created,
CAPRI/ProEngineer wrapper uses the services of and theparameteridentificationstructure.
CAPRI to obtain geometry information from a

ProEngineer CAD file, create and populate The root of the application, CpeAppl (Capri-

corresponding PIA parameter objects, and place those Pro/Engineer Application) is a derivative of the genetic

parameter objects in a parameter configuration, and application class, PaeAppl, defined by the PIA

create the corresponding parameter identification architecture. This derivative class provides the specifics
structure. The PaeAppl-based object of this wrapper to convert the genetic application shell into a real
contains a module, which reads an identified CAD file application wrapper, in this case of CAD data

through CAPRI facilities, interprets the data found, and obtained from ProEngineer through CAPRI
performs all the appropriate object creation and technology. One significant and well-known function,

organization. CreateApplieation, must be overridden by this

derivative class. In this case, this function acquires
PIA/CAD/CAPRIWRAPPER geometry information and creates the well-known

IMPLEMENTATION geometric parameter objects that are the ultimate goal
This section describes the implementation of the of the implementation. Additionally, a number of

PIA/CAD/CAPRI wrapper that captures and presents operations and facilities are implemented in this

geometry information from CAD files using the CAPRI derivative application class that are not well-known, but
technology. Figure 3 shows three of the four cooperate to implement and achieve the well-known

...... !.......... 1.... I I

CpeOp I CpeCfg 1! CpePid iConfigurationAcquireData] i Identification]
I

...............................I..[..............................
____ Pi!:Vo,?_me......] _.Pi.!!A!semblyoif!eW!o!!_..]

1. !
..r..I..I...T...I..............................
/ Pid:Node] i Pd'Edge . J i Pid'BoundingBox i Pid'Face iPid'AssemblofTheVolume"

....... '_ ' ' ' =.-...............:...........................,., ',_._Z'................_Y_............................., _!'d__B°un!.arie.!.............,
/

"................PiclTRange..................i...........l_i_7:l:esseia_ioi.............i.................pidTRanie"..................i..................._i_?iooi...................P,dBoundaryofTheWhole"]..-J
|

i-2-211--2-21 -i i-- -es e-i iio-a-..........p

Figure 3: Architecture of the PIA/CAD/CAPRI application wrapper

NASA/TM--2002-211358 4

resultofaPIA-compliantapplicationwrapper.Includedin
thisapplication-specificareais theabilitytocommunicate
withabackend,geometryserverthatisnecessitatedbythe
exigenciesofCAPRI/ProEngineeroperation.

Thesingleoperationprovided,AcquireData,prompts
theuserthroughPIA-definedfacilities,to identifya
CADfile fromwhichgeometryinformationis to be
obtained. Once this file is selected, the operation starts
the backend, geometry server mentioned above,
transmits the file selection to it, and receives from the

backend server the object-encapsulated geometry data
and identification information acquired from that file.

The parameter objects acquired by the AcquireData

operation are placed in the single parameter

configuration object implemented by the wrapper.
While the PIA defines a configuration hierarchy with

descendent parameter configurations, parameter

inheritance, and so on, this concept does not presently
exist within the CAPRI technology; within CAPRI,
there is only the geometry data. Thus, while descendent

parameter configurations may be created within a

PIA/CAD/CAPRI wrapper, no provision presently
exists for populating them with .any additional

geometric parameter objects and all geometric

information in such a descendent configuration will be,

in fact, inherited from the root of the parameter
configuration tree.

The parameter-identification structure, illustrated in Figure

3, is built by the AcquireData operation based upon the
information it receives from the backend, geometric server.

The structuralization of geometric parameters closely
follows that defined by CAPRI with volumes containing

nodes, edges, faces, boundaries, and a bounding box, edges

containing parameterization ranges and edge tessellations,

and faces containing parameterization ranges, loops, and
face tessellations. Three additional parameters called
AssemblyotTheWhole. AssemblyofFheVolume, and

BoundaryofIqaeWhole are created in the wrapper.
AssemblyotTheWhole creates an application-wide

assembly of every boundary that the wrapper encounters.
As a result, the whole geometry can be visualized.

AssemblyotTheVolume creates an assembly for a volume

if there is more than one boundary. BoundaryotTheWhole

creates a boundary if there are no boundaries provided by
CAPRI and groups all the faces into one. Names for the

various geometric components are numerically based. For

example, the fourth face of a given boundary becomes,
simply, Face4.

Figure 4 shows how the concatenation of names from

the identification tree is used to identify particular

parameters in the parameter configuration. For example,
the first loop of the second face of the first volume
would be Loop l/Face2/Volumel, as shown in the

figure. The figure only shows a partial representation of
the parameter configuration.

i CpeAppl 'i

J II

CpeOp] i CpeCfg |] 1
i CpePid "l

AcqureData i Configuration I
i Identification]

............ _Pa r!fl0undar.y!/Vo/u.me!__...................._P.a!.!B....0und!ngB.fx.ljVo!u_.me!_"........._i]

Par: Range4/Face2/Volumel Par: Loopl/Face2/Volumel 1

Figure 4: Example configuration of PIA/CAD/CAPRI application wrapper

NASA/TM---2002-211358 5

IMPLEMENTATION OF THE BACKEND
GEOMETRY SERVER

Acquisition of geometry information is, for the user,
quite simple: the appropriate CAD file is identified and

magic happens. The efforts to which the wrapper goes
to make this magic happen are somewhat more
extensive.

While CAPRI has achieved apparent vendor-neutrality
at the API level, this neutrality and consequent ease

does not extend to the actual making of an executable
program. One does not merely link the correct CAPRI

library into a main program and go from there. The

mechanisms necessary to obtain a working program

from the selection of the correct CAPRI library can vary
and the results are, at times, not convenient. Much, if
not all, of this is attributable not to some failure of the

CAPRI research effort, but simply to the different forms
and modalities in which the various CAD vendor

products offer access to the raw geometric information
with which CAPRI works.

In the case of ProEngineer, an optional software

component, ProToolkit, executes the vendor's geometry
kernel and then links to and executes a dynamic link
library identified to it when ProToolkit is started. The

CAPRI library, and the "main program" invoking it are,
in fact, subprograms of the ProToolkit execution, which

is, itself, a spawned process of a batch file, which
establishes the appropriate environment for its

operation. Since the graphical user interface through

which the PIA is exercised regards itself as a patriarchal
process, this process structure of ProToolkit and its

CAPRI access library presents a certain difficulty that is

dealt with as described in the following paragraphs.

The CpeAppl specialization of the application object
implements a client characteristic which, when TRUE,

indicates that it is operating as the apparent, PIA-

compliant, frontend application wrapper. When

AcquireData operates, it locates its containing
CpeAppl application object and interrogates it for the

state of this characteristic. Finding itself to be a part of a

client, AcquireData starts up the batch file (in which it
has placed the name of the desired CAD file, as well as

some socket communication information) to start the
ProToolkit execution. When ProToolkit connects to the

identified dynamic link library and calls its entry point,
the "main program" does the following. It receives the
transmitted file and communication information. It

creates another CpeAppl object and informs that obiect
that it is not a client (that is, the client characteristic is

made FALSE). It calls the CpeAppl object's
CreateApplication member function (which extracts
through CAPRI all the geometric information and

encapsulates it in objects), and then informs the

frontend client that the backend, geometric server is

ready for operations. When AcquireData receives this

ready signal, it sends a message requesting the
transmission of the object-encapsulated, geometric data,
which it then receives and places in the structures of its

containing CpeAppl client object.

The operation of the CreateApplication member

function, while long and tedious, is not particularly
complicated. CAPRI functions are called to obtain

geometric data and create objects to encapsulate and

identify it as it is found to exist. For example, one

CAPRI function is called to determine how many
volumes exist. A loop is then executed to create a

volume identification structure and obtain the specific
information for each volume in turn. Each volume

indicates how many nodes, edges, faces, and boundaries

exist in it and internal loops are executed to identify and
obtain information for each of these in their turn.

Because of the close correlation between the geometric

structuralizations Used by CAPRI and PIA, this process

is very natural and relatively easy to implement.

WRAPPER-SPECIFIC PARAMETER CLASSES

Some of the geometric parameter classes defined by

PIA provide geometric services beyond that of simple

data presentation. For example, the boundary class
provides the ability to obtain a cross section of its

geometric shape. The implementation of this function

provided by the well-known PIA parameter class is
based solely upon the information contained in the face

tessellations associated with the faces of the boundary.
Unfortunately, such cross sections, when based simply
upon triangular tessellations introduce noise into the
geometric information when the tessellated face exhibits

some finite curvature. The sides of the triangles

represent chords relative to the face curvatures they
attempt to describe and, thus, some deviation between
the practical and the ideal exists.

CAPRI offers a potential cure to this difficulty in the
form of a snap-to-face functionality. The cross-sectional

position computed from the tessellating triangle's side

may then be improved by snapping it back onto the
geometric face, thus reducing introduced error to some

acceptable value. Unfortunately, this snap-to-face

functionality is only available with a live, operating
CAPRI and is, thus, unavailable to the CpeAppl client
frontend wrapper.

NASA/TM--2002-211358 6

To alleviatethis difficulty,the PIA/CAD/CAPRI
wrapperderivesseveralof these geometric parameter
objects beyond their well-known level and adjusts the

functionality in these particular cases. Continuing the
example above, the boundary parameter object now

knows that it might be a member of a client CpeAppl

wrapper. It locates its containing CpeAppl application
and determines if this is the case. In this event, it does

not do the cross-sectioning operation itself (which it
inherits from its well-known base class), but instead

transmits a message (through CpeAppl-specific
facilities) to its counterpart in the backend server. That

counterpart first invokes the inherited functionality to
obtain a basic cross-section result and then utilizes the

snap-to-face functionality provided by CAPRI to
improve that result and, to a specified level, remove the
induced geometric noise. The final result is then
transmitted back to the frontend client that returns it to
its caller as its own work.

RBCC HYPERSONIC VEHICLE EXAMPLE

The acquisition and presentation of geometric data

through the PIA/CAD/CAPRI wrapper in the manner
described above has been demonstrated with the

geometry of a Rocket-Based Combined Cycle (RBCC)

hypersonic vehicle propulsion system under study at the
Glenn Research Center. This information was then

examined by a PIA wrapper of the Large Perturbation

Inlet (LAPIN) simulation code. That second wrapper
used the facilities of the presented geometric parameters
(in particular, the cross-sectioning facilities) and its own

heuristics to generate the LAPIN-specific flowpath
information needed for LAPIN operation. LAPIN was

then executed and its results encapsulated in parameter

objects presented by that second, PIA/LAPIN wrapper.
All of this proceeded on an automated basis.

Figure 5: RBCC propulsion system as displayed by CAPRI

NASA/TM--2002-211358 7

Figure5showsaCAPRi/ProEngineerrenderingof the

RBCC propulsion system assembly. Figure 6 shows a
rendering by the research graphics user interface (GUI)

of the geometric information of the RBCC propulsion

system as presented by the PIA/CAD/CAPRI wrapper.
(Note that the research GUI to PIA is a research tool

only and not a project product; thus, less than

completely sophisticated renderings and displays are
considered entirely adequate performance for the GUI

component.) Also illustrated toward the upper left

corner of Figure 6 is a partially expanded portion of the
identification structure resulting from the geometric

information obtained by the PIA/CAD/CAPRI wrapper
through the CAPRI interface to the original
ProEngineer data.

Using the implemented PIA/CAD/CAPRI/ProEngineer
wrapper, the RBCC propulsion system information
contained in the original ProEngineer CAD file can be

read and the data encapsulated in geometric objects as
described above. Once this geometric information is

presented in this manner, another consumer of

information (in the case of the present demonstration,
the PIA/LAPIN wrapper) can access and consume this

data as it deems appropriate. Note that the information,

by the design of PIA, is accessed by its kind, that is as
being a geometric boundary or a geometric face, and

not by the application presenting it. Thus, the

PIAfLAPIN wrapper is not dependent upon finding a

PIA/CAD/CAPRI wrapper for its information, but only
upon finding some wrapper containing geometric
boundary information.

The PIA/LAPIN wrapper is programmed, having found
a source of geometric-boundary information, to convert

that information into the unique flowpath description
form required for LAPIN operation. LAPIN-specific
processes and rules are encapsulated in the PIA/LAPIN

wrapper to effect this result. These processes utilize

parameter-provided services, in particular the ability to
provide cross sections of geometric boundaries and the
ability to manipulate, sort, and characterize the curves

[]. CapritProEngineer

_.. Capri

!AssemblyOfTheWhole

_.. Volumel

E3"Boundaries

i i i i....BoundaryOfTheWhole

: ! i" BoundingBox

i _..Edge,

i l_..Faces

i _odes
i i....Volume

I_1..Volume2

El.. Volume3

I_.. Volume4

i"' Root ConFiguration

_..oper_oos
i _..-.AcquireData

i....Successor Applications

Figure 6" RBCC propulsion system information in PIA

NASAFFM--2002-211358 8

thatresult.ProcessingandrulesthatareLAPIN-specific
(i.e.,the discriminationbetweenan inlet with no
centerbodyandatwo-dimensionalinletwithnosecond
cowlcross-section)areencapsulatedin theinteriorof
thePIA/LAPINwrapperandarenotpresentedto the
outsidePIAenvironment.

A complicationpresentedin the RBCCpropulsion
systemexampleis thatthetowpathof thissystemis
neitheraxisymmetricnortwo-dimensional.Instead,the
towpathhasa crosssectionakinto theshapeof an
orangesegmentextendingaroundonethirdof the
circumferenceofaroundfuselage.SinceLAPINworks
intemallyin termsof cross-sectionalarea,presenting
thesimpleXY crosssectionof thetowpathtoLAPIN
producederroneousanalysesunderLAPIN'sdefault
axisymmetricassumption.Similarly,adjustingeither
XY profiletoproduceappropriatecross-sectionalareas
ledtoincorrectcalculationof obliqueshockpoints.The
acceptedsolutionwasto describethe inlet under
LAPIN'stwo-dimensionalgeometryoptionwithwidth
factorsadjustedto producecorrectcross-sectional
areas.Thedifficultywithboththeselaterapproaches
was that the developmentof the towpathcross
sectionalareaswasa laboriousprocessthat was,
apparently,not particularlyfacilitatedby theCAD
system.SincethePIAgeometryparametersarenot
particularlyprogrammedfor XY cross section
generationonly, it was a small matterfor the
PIA/LAPINwrapper,upondeterminingthata two-
dimensionalinlet formwasrequired,to requestand
obtainYZcrosssectionsthatit thenhadprocessedand
sortedto determinethecorrectcross-sectionalareaof
thetowpathateachdesiredstation.

PROCESS SPEED

It is tacitly assumed that anything computerized will,

necessarily, happen in the blink of an eye. With regard
to the acquisition, presentation, transfer, and

consumption of geometric information reported above,
this is not exactly the case. The PIA/CAD/CAPRI to
PIA/LAPIN geometric information transfer took on the

order of two days on a 1.5 GHtz, Pentium IV,

workstation class machine. In contrast, the hand process
that this technology could replace, took several weeks

per case. This time reduction, while certainly a
significant saving at one level, does not seem to match

the expectations one might have of complete
automation.

Two factors may serve to ameliorate

disappointment of expectation.

this

The considerable gain in reliability (that is, the

elimination of mistakes that occur in a by-hand

process) must be considered. It is not entirely
appropriate that an iteration by automation be

directly compared to an iteration by hand since a

single iteration by hand has a much larger

probability of being wrong. Perhaps it is more

appropriate to compare a single iteration by
automation to at least three iterations by hand so as
to have at least a 2-out-of-3 confirmation that the

fight answer has been obtained by hand methods.

. The present effort is a research effort only. The

goal of the demonstration was to prove that the

concepts of PIA did, in fact, work, not that they
worked efficiently. In point of fact, many execution

improvements could be implemented that would

speed up execution in the event that the technology

were to be applied as a day-to-day, working,
production tool.

CONCLUSIONS

A wrapper conforming to the standards of the Project

Integration Architecture has been developed. The

wrapper provides a means for accessing geometry
information from CAD files. Other PIA-conformant

consumers of information (in the reported
demonstration, another PIA-wrapped CFD analysis
code, LAPIN) may then examine and consume that

geometric information as appropriate. A demonstration

of this transport of information has been successfully
completed for the RBCC propulsion system.

To achieve a measure of CAD-vendor neutrality, the

CAPRI geometric information access technology has

been used. This allows the PIA/CAD wrapper to be
easily reused when the supply of CAD information

switches between vendors. Unfortunately, the present

effort has not extended so far as to incorporate all

CAPRI-supported CAD vendors in a single rendering of
the PIA/CAD/CAPRI wrapper.

Finally, by using the reported technology, the need for
transferring geometric information'by hand from a CAD

encapsulation to a consumer of that information, for

example a CFD code, is eliminated. This hand process

NASA/TM--2002-211358 9

can take several weeks for technologically advanced

propulsion systems and is, regrettably, prone to

undetected errors. By choosing the automated

techniques enabledby the PIA technology, this process

can be reduced to a matter of days (or less) and its

reliability is distinctly increased.

The Project Integration Architecture provides a central

system for accessing geometry data from CAD files and

using that data for CFD simulations. To achieve the

geometry data accessing functionality, CAPRI has been

integrated into PIA. The benefits of wrapping CAPRI

into PIA is that it offers direct access to data of many

formats, provides accurate capture of information, and

allows convenient data archiving in a single

environment. All these benefits have been shown with

this supersonic inlet simulation demonstration.

REFERENCES

1. Jones, William Henry. "Project Integration Architecture:

Architectural Overview." NASA Glenn Research Center,
2001, PIA Web Site:

_t_p'._lv,_w_'.grc.nasa.govAr_¥_V,(priceOOO!pubitm07_

2. Haimes, Robert. "Computational Analysis PRogramming

Interface (CAPRI): A Solid Modeling Based

Infrastructure for Engineering Analysis and Design."
Cambridge, MA. November 1999. Web Site:

b ttp://raphael.mit.edu/c<?ri_

3. Trefney, Charles. "An Air-Breathing Launch Vehicle

Concept for Single-Stage-to-Orbit." NASA/TM_1999-

209089, May 1999.

4. Cole, Gary and Richard, Jacques. "Supersonic

Propulsion Simulation by Incorporating Component

Models in the Large Perturbation Inlet (LAPIN)

Computer Code." NASA TM- 105193, December 1991'

NASA/TM--2002-211358 10

REPORT DOCUMENTATION PAGE Form Approved

Pub,°reposingburaenforthi_co,_otionof_ 7 ;'Nm_"__ _ ; h-g'dd_p_rre_pon_e,inclodingth_timeforr
gathering and maintainingthe data needed, and completing and reviewingthe collectionof information. Send comments regardingthis burden estimateor any other aspect of this
collectionof information,includingsuggestionsfor reducingthis burden, to WashingtonHeadquarters Services, Directoratefor Information Operationsand Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, PaperworkReduction Project(0704-0188), Washington,DC 20503.

1. AGENCY USE ONLY (Leave blank) ATES COVERED

Technical Memorandum
4. TITLE AND SUBTITLE

5. FUNDING NUMBERS

Project Integration Architecture (PIA) and Computational Analysis Programming
Interface (CAPRI) for Accessing Geometry Data From CAD Files

6. AUTHOR(S) WU-704--01-13-00

Theresa L. Benyo

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-13178

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM--2002-211358
AIAA-2002-0750

11. SUPPLEMENTARY NOTES

Prepared for the 40th Aerospace Sciences Meeting and Exhibit sponsored by the American Institute of Aeronautics and

Astronautics, Reno, Nevada, January 14-17, 2002. Responsible person, Theresa L. Benyo, organization code 5880,
216-433-8723.

12a. DISTRIBUTION/AVAILABILITY STATEMENT [

Unclassified- Unlimited I
Subject Category: 61 Distribution: Nonstandard I

/
Available electronically at htt_://_Z]txs:grc.nasa.gov/GLTRS |

This publication is available from the NASA Center for AeroSpace Information, 301-621-0390.
/

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

Integration of a supersonic inlet simulation with a computer aided design (CAD) system is demonstrated. The integration

is performed using the Project Integration Architecture (PIA). PIA provides a common environment for wrapping many
types of applications. Accessing geometry data from CAD files is accomplished by incorporating appropriate function

calls from the Computational Analysis Programming Interface (CAPRI). CAPRI is a CAD vendor neutral programming
interface that aids in acquiring geometry data directly from CAD files. The benefits of wrapping a supersonic inlet

simulation into PIA using CAPRI are; direct access of geometry data, accurate capture of geometry data, automatic

conversion of data units, CAD vendor neutral operation, and on-line interactive history capture. This paper describes the
PIA and the CAPRI wrapper and details the supersonic inlet simulation demonstration.

14. SUBJECT TERMS

Computer programs; Object-oriented programming; Systems integration;
Supersonic inlets; Flow geometry; Computer aided design

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

16
16. PRICE CODE

OF THIS_ PAGE I OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

20. LIMITATION OF ABSTRACT

